Specification and classes
A distribution is often specified by a pdf or a cdf involving certain parameters. Or it may be specified by a stochastic process generating some values: ie in terms of other other distributions.
Sometimes, the density specified need not even be proper (sum/ integrate to 1) to be useful: Eg: In applying the conditional probability inversion trick.
Notation
If the pdf of
Parameter types
Location parameters specify important points in the distribution: Eg:
Scale parameters specify how spread-out the distribution is. A parameter
All other parameters are called shape parameters.
Specify continuous distribution over bounded support
Take Indicator fn
Inference, Sampling from distribution
See randomized algorithms ref.