\(Pr(X\geq E[X])>0\), \(Pr(X\leq E[X])>0\).
For sparse dependency graphs
Aka Lovasz local lemma.
For Dependency graph with \(Pr(E_{i})<p, 4dp<1\): \(Pr(\cap \bar{E_{i}}) > 0\).
Lovasz local lemma: general case: Dependency. graph G=(V,E), \ \(x_{i} \in [0,1]\): \(Pr(E_{i}) \leq x_{i} \prod_{(i,j) \in E}(1-x_{j})\): \(Pr(\cap \bar{E_{i}})\geq \prod_{i}(1-x_{i}) > 0\)
Threshold behavior
\(X>0\): Second moment method: \(Pr(X=0)\leq Pr((X-E[X])^{2} \geq (E[X])^{2})\). Conditional expectation inequality for \(\sum\) indicators: \ \(Pr(X>0) \geq \sum_{i=1}^{n}\frac{Pr(X_{i}=1)}{E[X|X_{i}=1]}\).
Explicit constructions
\tbc
Make Existence proofs
Design sample space, show \(Pr(E)>0\), maybe modify to get final object. Use Expectation argument. Make non-negative RV X, use Chebyshev to bound Pr(X=0). Make dependency graph, use Lovasz local lemma.