04 Existence proofs

Pr(XE[X])>0, Pr(XE[X])>0.

For sparse dependency graphs

Aka Lovasz local lemma.

For Dependency graph with Pr(Ei)<p,4dp<1: Pr(Ei¯)>0.

Lovasz local lemma: general case: Dependency. graph G=(V,E), \ xi[0,1]: Pr(Ei)xi(i,j)E(1xj): Pr(Ei¯)i(1xi)>0

Threshold behavior

X>0: Second moment method: Pr(X=0)Pr((XE[X])2(E[X])2). Conditional expectation inequality for indicators: \ Pr(X>0)i=1nPr(Xi=1)E[X|Xi=1].

Explicit constructions

\tbc

Make Existence proofs

Design sample space, show Pr(E)>0, maybe modify to get final object. Use Expectation argument. Make non-negative RV X, use Chebyshev to bound Pr(X=0). Make dependency graph, use Lovasz local lemma.