02 Inferences about distributions of function(RV)

Y = g(X).

Use Pr(g(X)A)=Pr(Xg1(A)). So, given CDF, PDF of X, can deduce CDF of g(X) and thence derive PDF of g(X).

Using \(\frac{dg^{-1}(Y)\)

If g is monotone in (x,x+δx): pX(x)δxpY(y)δy, taking (x,x+δx) to (y,y+δy) using g: So pY(y)=pX(x)|dxdy|=pX(g1(y))|dg1(y)dy|: so maximum probability density changes with variable change.

If g is not continuous, but partition A0,..Ak with Pr(XA0)=0, with {gi}=g over {Ai} monotone; then pY(y)=ipX(g1(y))|dgi1(y)dy|; where appears to account for the probability that Y=y over various domains of X.

Extension to multidimensional distributions

Y=g(X1,X2); X1=h(Y,X2)\(.Fix\)X2=x2\(;get\)p(Y,x2)=pX1,X2(X1 =h1(Y,x2)|x2)|dh1(Y,x2)dY|\(;thendo\)pY(y)=p(Y,x2)dx2.

Using moment generating functions

Given mX(t), find \ mY(t)=E[ef(X)t]; thence deduce pdf of Y.