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1. Introduction

1.1. The theme. We will introduce the Nuclear norm, the Schatten p norms, the
Ky Fan norms, and some of their properties. In particular, we will show that the
these norms are indeed matrix norms, that they are convex functions of the matrix
entries and that they are unitarily invariant.

1.2. The intention. One begins to understand new mathematics only when one
can explain it in terms of simpler and familiar mathematics. The intention is to
explain these properties in terms of elementary linear algebra, to the extant possible
in 1.5 hours. We will get a feel for a good variety of ideas which go into these proofs.

1.3. The proofs. The proofs and ideas presented here come from [1] and [2].
There are over 20 theorems and lemmas involved, and it is a joy to read through

them all. We will see proofs of important claims in detail. But, in the interests of
time, we will omit proofs to other subsidiary claims.

Also, though I have done the algebra, I have not yet satisfactorily tried to view
various claims from the geometric perspective.

1.4. Outline. First we will define some norms, consider some ideas about stochas-
tic matrices, majorization and σ inequalities, then we will show the normness of
Ky Fan norms and Schatten p norms.

1.5. Notation. Unless specified otherwise, any matrix is assumed to be m×n. Let
q = min {m,n}. (ai) represents a vector whose ith element is ai. (ai) ↓ represents
that in this vector, all elements are arranged in descending order.

1.6. Things to leave on the whiteboard. The outline. The definition of norms,
matrix norms, Ky Fan and Schatten norms, Birkhoff’s theorem, majorization.

2. The norms

2.1. The intention. We will now define some norms of interest.
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2.2. Vector and matrix norms. Any vector norm obeys non negativity, positive
definiteness, homogeneity / scalability (‖cv‖ = c ‖v‖) and triangle inequality.

In addition to this, matrix norms obey submultiplicativity: ‖AB‖ ≤ ‖A‖ ‖B‖.

2.2.1. Absolute norm. Absolute norm: ‖a‖ = ‖|a|‖. Absoluteness iff monotonicity
(|x| ≤ |y| =⇒ ‖x‖ ≤ ‖y‖).

2.3. Ky Fan (p,k) norms. Take σi in descending order. ‖A‖p,k = (
∑k

i=1 σ
p
i )1/p

for p ≥ 1: p norm to top k σ.

2.4. Schatten p norms. Apply p norm to singular values. Special case of Ky Fan
norm: ‖A‖p,q = ‖A‖Sp = (

∑
σp

i )1/p.

2.4.1. Frobenius (Hilbert-Schmidt, Euclidian) norm. ‖A‖S2 = ‖A‖F .
Optional info. (

∑
a2

i,j)
1
2 = (

∑
‖aj‖2)

1
2 = (trA∗A)

1
2 = (trAA∗)

1
2 = (trΣ∗Σ)1/2 =

AF . So, based on matrix inner product: 〈A,B〉 = tr(B∗A).

2.4.2. Trace (Nuclear) norm. ‖A‖S1 = ‖A‖tr =
∑
σi = tr((A∗A)1/2).

2.5. Convexity. Convexity of vector norms is a direct consequence of their homo-
geneity and congruence with the 4 inequality.

3. Stochastic matrices

3.1. The intention. This is an important idea we will need in proving important
ideas about majorization, and in our proofs of normness. We will introduce the
ideas, and will return to the proofs later if we still have time in the end.

3.2. Bistochastic matrix. S is bistochastic if S ≥ 0, every row and column sums
to 1.

For permutation matrix P, PS or SP also stochastic.
(Birkhoff): {S} = set of finite convex combinations of permutation matrices Pi.

3.3. Doubly substochastic matrix Q. Q is doubly Substochastic if Q ≥ 0, every
row and column sums to at most 1.

4. Ideas about Majorization

4.1. The intention. Majorization is an important idea we will need in deriving
singular value inequalities, and in our proofs of normness. We will introduce the
ideas, and will return to the proofs later if we still have time in the end.

4.2. Strong majorization. Take a, b ∈ Cm, rearrange in descending
order to get the vectors (a[i]), (b[i]), and in ascending order to get (a(i)), (b(i)).
a � b (b majorizes a) if

∑m
i=1 ai =

∑m
i=1 bi,

∑k
i=1 a[i] ≤

∑k
i=1 b[i]∀k.

4.2.1. Differing notations. One can get an ≡ notion from using ascending order
and saying a majorizes b. Note: [1] and [2] differ slightly in the way they define
majorization notations.

4.3. Connection with stochastic matrices. b majorizes a iff ∃ doubly stochastic
S such that a = Sb.

4.4. Weak majorization. Weak majorization (�) is like strong majorization, ex-
cept the

∑m
i=1 ai =

∑m
i=1 bi condition is omitted.
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4.4.1. Connection with stochastic matrices. b weakly majorizes a ≥ 0 iff ∃ doubly
substochastic Q: a = Qb.

b weakly majorizes a iff ∃ doubly stochastic S: a ≤ Sb.

4.4.2. Weak Majorization preserved under convex increasing fn. Take convex in-
creasing scalar fn f. Let f(a) denote the vector (f(ai)). If b weakly majorizes a,
then f(b) weakly majorizes f(a).

Proof sketch(3.3.8 in [2]):
As b weakly majorizes a (a � b), for some doubly stochastic Q, a ≤ Qb.
Due to monotonicity of f, f(a) ≤ f(Qb). So, f(a) � f(Qb).
By Birkhoff’s thm, for αi ≥ 0,

∑
αi = 1, f(Qb) = f((

∑
αiPi)b) ≤

∑
αif((Pi)b)

(using the convexity of f) =
∑
αiPif(b) = Qf(b). So, f(Qb) � f(b). Hence, we

have that f(a) � f(Qb) � f(b). �
A corollary: If 0 ≤ a, b are vectors with entries in descending order, if

∏k
i=1 ai ≤∏k

i=1 bi, and if g is such that g(ex) is convex increasing, then g(b) weakly majorizes
(�) g(a).

Proof sketch: Taking log on both sides, we get log a � log b. Then, using
f(x) = g(ex) we get g(a) � g(b). In this sketch, we will ignore cases where ai>k = 0.

5. Singular value Σ properties

5.1. Motivation. Singular value inequalities are important in proving the vector
and matrix normness of Ky Fan norms.

5.2. Unitary invariance. Σ ∈ Rmn always, so Σ = Σ∗. Σ = U∗AV : so, Σ is
unitary invariant: σi(A) = σi(Q1AQ2).

5.3. Trace of A. tr(A) =
∑

i ai,i. A linear map: tr(kA + lB) = k tr(A) + l tr(B).
tr(AB) = tr(BA). Similarity invariant: tr(P−1AP ) = tr(APP−1) = tr(A). So,
tr(A) = tr(QTQ∗) =

∑
λi.

5.4. Effect of row or column deletion. Ar: A with r rows or cols deleted;
σk(A) ≥ σk(Ar) ≥ σk+r(A). (Proof only for 2 hr talk.)

Proof sketch: (3.3.1 [2]) Prove for r=1, get general case thence. Suppose sth
col is deleted: For upper bound, use σk(A1) = maxS⊂Cn,dim(S)=k minx∈S ‖Ax‖2
with extra cond: x ⊥ es; for lower bound use
σk(A1) = minS⊂Cn,dim(S)=n−k maxx∈S ‖Ax‖2 with extra cond. For row deletion,
consider A∗.

5.5. The inequality
∏k

i=1 σi(X∗kAYk) ≤
∏k

i=1 σi(A). Xk, Yk have ⊥ columns.
Proof sketch:

By block mult, for any arbit sq orth X, Y, Sk = X∗kAYk is the upper left sub-
matrix of S = X∗AY .

So, σi(X∗kAYk) = σi(Sk) ≤ σi(S) = σi(X∗AY ) = σi(A). So, |det(X∗kAYk)| =∏k
i=1 σi(X∗kAYk) ≤

∏k
i=1 σi(A).

5.6. The inequality
∑k

i=1 |λi(A)|p ≤
∑k

i=1 σi(A)p. Proof sketch:
For square A, take A = QTQ∗, T = Q∗AQ, (λi) ↓; and take the k-principal
submatrix Tk. By block multiplication, we get: Tk = Q∗kAQk.
So, |det(Tk)| =

∏k
i=1 |λi(A)| = |det(Q∗kAQk)| ≤

∏k
i=1 σi(A) using a lemma proved

earlier. Equality holds for k=m. (3.3.2 [2])
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By majorization theorems, |tr(A)| ≤
∑q

i=1 |λi(A)| ≤
∑q

i=1 σi(A). Also, for any
p ≥ 1,

∑k
i=1 |λi(A)|p ≤

∑k
i=1 σi(A)p.

5.7. Polar decomposition. m ≤ n: take SVD A = U [Σ 0][V1 V2]∗ = UΣV ∗1 ,
P 2 = AA∗ = UΣ2U∗: +ve semidefinite; take P = UΣU∗: Hermitian +ve semidefi-
nite. So, A = UΣV ∗1 = PUV ∗1 = PY , where Y has orthonormal rows.

So, if m ≥ n: A = Y Q for Hermitian +ve semidefinite Q, Y with orth columns:
apply thm to A∗.

5.8. The inequality
∑k

i=1 σi(AB)p ≤
∑k

i=1 σi(A)pσi(B)p. Proof sketch:
A ∈ Cm×p, B ∈ Cp×n. Take AB = UΣV ∗; U∗kABVk = Σk. Take polar decomposi-
tion of BVk = XkQ; Q2 = V ∗k B

∗BVk.
Thus, det(Q2) ≤

∏k
i=1 σi(B∗B) =

∏k
i=1 σi(B)2, and det(Q) =

∏k
i=1 σi(B).

So,
∏k

i=1 σi(AB) = |det(U∗kABVk)| = |det(U∗kAXk)det(Q)| ≤
∏k

i=1 σi(A)σi(B)
using a lemma proved earlier. (3.3.4 [2])

By majorization theorems, for p ≥ 1,
∑k

i=1 σi(AB)p ≤
∑k

i=1 σi(A)pσi(B)p.

5.9. k partial isometry. A = UΣV ∗ with Σ =
(

Ik 0
0 0

)
.

5.10. An identity about partial sum of top k singular values.
∑k

i=1 σi(A) =
max

{
|tr(X∗AY )| : X∗X = Y ∗Y = I,X ∈ Cm×k, Y ∈ Cn×k

}
= max {|tr(AC)|C ∈ Cn×m is rank k partial isometry}.

Proof sketch: We can get C from Y, X by taking C = Y X∗. Then, σi(C∗C) =
σi(XX∗) = σi(X∗X) = 1, and we confirm that C is a rank k partial isometry.

We can also get Y, X from C: use SVD: C = UΣV ∗ = UkV
∗
k .

|tr(AC)| = |
∑q

i=1 λi(AC)| ≤
∑q

i=1 |λi(AC)|
≤
∑q

i=1 σi(AC) ≤
∑q

i=1 σi(A)σi(C) =
∑k

i=1 σi(A) using properties shown earlier.
Take A = UΣV ∗, then for rank k isometry C = V ÎkU

∗, tr(AC) = tr(UΣÎkU∗) =∑k
i=1 σi(A).

5.11. The inequality
∑k

i=1 σi(A+B) ≤
∑k

i=1 σi(A)+
∑k

i=1 σi(B). Proof sketch
(3.4.3 [2]) :

Let C be some rank k partial isometry.∑k
i=1 σi(A+B) = max {|tr((A+B)C)|} ≤ max {|tr(AC)|+ |tr(BC)|}

≤ max {|tr(AC)|}+ max {|tr(BC)|} = RHS.

6. Proofs of normness

6.1. Unitary invariance of norms. If ‖.‖ unitary invariant, by SVD, ‖A‖ = ‖Σ‖.

6.1.1. Symmetric gauge fn g. g : Cq → R+ is a vector norm on Cq, and is also an
absolute norm, and is permutation invariant: g(Px) = g(x). So, it is a fn on a set
rather than a sequence.

Given a unitarily invariant ‖‖ : g(x) = ‖X‖ : X = diag(x) is symm gauge. The
diag(x) function returns a m×n matrix whose diagonal elements correspond to the
elements of x.

Proof sketch(3.5.18 [2]): Normness of g comes from normness of ‖.‖. Permu-
tation invariance and absoluteness come from unitary invariance of ‖‖. �

Given symmetric gauge g, ‖X‖ = g(σ) is unitary invariant matrix norm.



6 VISHVAS VASUKI

Proof sketch(3.5.18 [2]): Unitary invariance of ‖.‖ follows from unitary invari-
ance of Σ. As g is vector norm, we get +ve definiteness, non negativity, homoge-
nousness. We next prove 4 inequality.

g is absolute, so it is monotone. σ(A+B) weakly majorized by σ(A) + σ(B), so
σ(A+B) ≤ S[σ(A)+σ(B)] for some doubly stochastic S. So, using monotonicity of
g, g(σ(A+B)) ≤ g(S(σ(A) + σ(B))) = g(

∑
i αiPi(σ(A) + σ(B))) (using Birkhoff’s

thm) ≤
∑
αi(g(Piσ(A)) + g(Piσ(B))) (using homogeneity and 4 inequality of g)

≤ g(σ(A)) + g(σ(B)) = ‖A‖+ ‖B‖, using permutation invariance of g.

6.2. Ky Fan (p, k) norms. We have already seen 4 inequality for (1, k) norm.

6.2.1. Schatten p norms. Normness of the Ky Fan (p, q) norms follows easily from
the fact that p norms are symmetric gauge functions. So, we are mostly done with
them.

6.2.2. The general case. The following is optional, and will be presented in case
there is time left:

We now show the normness of general (p, k) norms by showing that their de-
pendence on σ(A) is a symmetric gauge.

Consider the symmetric gauge ‖x‖p,k corresponding to ‖A‖p,k. We want to show
that this is indeed a symmetric gauge. Only 4 inequality is nontrivial. : Proof
sketch: Take a, b in absolute descending order to get the vectors a′ = (a[i]), b′ =
(b[i]).

We can show by induction on k that
∑k

i=1(|a′| + |b′|)i =
∑k

i=1(|a[i]| + |b[i]|) ≥∑k
i=1(|a|+ |b|)[i] ≥

∑k
i=1 |a+ b|[i]. So, |a′|+ |b′| weakly majorizes a+ b.

So, by weak majorization theorems, for p ≥ 1:
∑k

i=1(|a′|+ |b′|)p
i =

∑k
i=1(|a|[i] +

|b|[i])p ≥
∑k

i=1 |a+ b|p[i].
So, raising both sides to 1/p, we have that ‖|a′|+ |b′|‖p,k ≥ ‖a+ b‖p,k.
Now, consider the vectors a′(k) and b′(k), which are a’ and b’ with a′i = b′i =

0 ∀i > k. By the 4 inequality of the p norm, we have that ‖|a′|+ |b′|‖p,k =∥∥∥|a′(k)|+ |b
′
(k)|
∥∥∥

p
≤
∥∥∥|a′(k)|

∥∥∥
p

+
∥∥∥|b′(k)|

∥∥∥
p

= ‖a′‖p,k + ‖b′‖p,k = ‖a‖p,k + ‖b‖p,k. �

6.2.3. Matrix normness. Matrix normness is seen using inequalities seen earlier:∑k
i=1 σi(AB)p ≤

∑k
i=1 σi(A)pσi(B)p ≤

∑k
i=1 σi(A)p

∑k
i=1 σi(B)p.

7. Interesting ideas about Doubly Substochastic matrix Q

This is unlikely to be covered.
Q is dbl substochastic iff B has dbl stochastic dilation S: make deficiency vectors

dr, dc; get difference matrices Dr = diag(dr), Dc = diag(dc); get S =
(

Q Dr

DT
c QT

)
.

{Q} equivalent to set of convex combos of partial permutation matrices: Dilate Q
to S, get finite convex combo of Pi, take the convex combo of principal submatrices.
Q ∈ Cn×n is dbl substochastic iff ∃ dbl stochastic S ∈ Cn×n with A ≥ B: Take

any Q, get finite convex combo of partial permutation matrices; alter each to get
permutation matrix; their convex combo is S.
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